2024 IMO P1

James Stewart

September 11, 2024

Solution to 2024 IMO P1

Problem: Find all real numbers α such that, for every positive integer n, the integer

$$\left\lfloor \alpha \right\rfloor + \left\lfloor 2\alpha \right\rfloor + \dots + \left\lfloor n\alpha \right\rfloor$$

is divisible by n.

Solution: The answer is even integers.

There are two cases.

Case 1: α is an integer. We know that n is a factor of

$$\alpha + 2\alpha + \dots + n\alpha = \alpha \frac{n(n-1)}{2},$$

 \mathbf{SO}

$$\alpha(\frac{n-1}{2})$$

must be an integer. Since n can be an even number, α must be an even integer here.

Case 2: α is not an integer. We can translate α by multiples of 2 until $-1 < \alpha < 1$.

Note that

$$\lfloor \alpha + 2k \rfloor + \lfloor 2(\alpha + 2k) \rfloor + \dots + \lfloor n(\alpha + 2k) \rfloor \equiv \lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \dots + \lfloor n\alpha \rfloor \pmod{n}$$

if k is an integer.

Case 2.1: $0 < \alpha < 1$. Let k be the smallest positive integer satisfying $k\alpha > 1$. Setting n = k, we have

$$0+0+\dots+0+0+1$$

is a multiple of n. This implies that n = k = 1, so $\alpha > 1$, a contradiction.

Case 2.2: $-1 < \alpha < 0$. Let k be the smallest positive integer satisfying $k\alpha < -1$. Setting n = k, we have

$$(-1) + (-1) + \dots + (-1) + (-1) + (-2) = (-1)(n-1) + (-2) = -n - 1.$$

Since this is a multiple of n, we know that n = k = 1, so $\alpha < -1$, a contradiction.